人教版初一年级数学下册导学案免费教案下载
(1)教师让学生说一说在学习对顶角概念后,结果实际操作获得直观体验发现了什么?并说明理由.
(2)教师把说理过程,规范地板书:
在图1中,∠AOC的邻补角是∠BOC和∠AOD,所以∠AOC与∠BOC互补,∠AOC 与∠AOD互补,根据“同角的补角相等”,可以得出∠AOD=∠BOC,类似地有∠AOC=∠BOD.
教师板书对顶角性质:对顶角相等.
强调对顶角概念与对顶角性质不能混淆: 对顶角的概念是确定二角的位置关系,对顶角性质是确定为对顶角的两角的数量关系.
(3)学生利用对顶角相等这条性质解释剪刀剪布过程中所看到的现象.
四、巩固运用
1.例:如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数.
教学时,教师先让学生辨让未知角与已知角的关系,用指出通过什么途径去求这些未知角的度数的,然后板书出规范的求解过程2.练习:
(1)课本P5练习.
(2)补充:判断下列图中是否存在对顶角.
五、作业
课本P9.1,2,P10.7,8
平行线
第五章第二节第一课时
一.教学目标
1.了解平行线的概念,理解同一平面内两条直线的两种位置关系;
2.认识平行公理1、2;
3.了解什么叫公理.
重点:平行线的公理
难点:利用平行线公理解决问题
二.教学手段与方法
师生共同探讨
三.教学准备
三角尺
四.导学过程
〖探索1〗
如图,已知直线AB和直线外一点P,你能过点P画一条直线与AB平行吗?把你的画法与同伴交流,看谁的方法好.
思考:在同一平面内,两条直线有几种位置关系?
想一想:是否存在既不平行又不相交的两条直线?
〖探索2〗
在一张半透明的纸上任意画一条直线AB,在直线外任取一点P,你能折出过点P的平行线吗?试一试,并把你的折法与同伴交流.
〖猜一猜〗
如图,经过直线AB外一点P,可以画两条直线和这条直线平行吗?
〖平行公理1〗
经过直线外一点,有且只有一条直线与这条直线平行(见P14).
〖释义〗
本书中所说的基本事实是人们在长期实践中总结出来的结论, 基本事实也称为公理.公理可以作为以后推理的依据.
〖探索3〗
如图,P是直线AB外一点,CD与EF相交于P.若CD与AB平行,则EF与AB平行吗?为什么?
〖探索4〗
如图,若CD∥AB,且EF∥AB,则CD与EF有可能相交吗?为什么?
〖平行公理2〗
如果两条直线都和第三条直线平行,那么这两条直线也互相平行.
友情提示:
若a=b=c(字母表示数),那么,a=c ,根据的是____________.
若a∥c, b∥c(字母表示直线),那么a∥b.根据的是______________.
〖练习〗
如图,已知△ABC,分别取AB、AC的中点D、E,连结D、E.猜一猜:直线DE与直线BC之间有怎样的位置关系?另外再画一个三角形看一看,是否存在同样的位置关系.
〖作业〗
1.用剪刀剪一块任意四边形的硬纸板(下一节课要用).
2.你会画梯形吗?你会画等腰梯形吗?试一试(工具不限).
3.如图,已知四边形ABCD,分别取AB、BC、CD、DA的中点E、F、G、H,顺次连接EF、FG、GH、HE.你发现了什么?再画一个四边形试一试.
平 移
学习目标
1.经历观察、分析、操作、欣赏以及抽象、概括等过程,经历探索图形平移基本性质的过程以及与他人合作交流的过程,进一步发展空间观念,增强审美意识;
2.通过具体实例认识平移,理解平移的基本内涵,理解平移前后两个图形对应点连线平行且相等、对应线段和对应角分别相等的性质。
学习重点:平移的基本内涵与基本性质。
学习难点:平移特征的探索及理解。
教学手段
师生共同探讨
教学准备
课件 三角尺
导学过程设计
一、创设问题情境
1. 想一想:(课件演示)
观察图片中上升的电梯,运动的小火车,滑雪的人, 传送带上的电视机与手扶电梯上的人,思考:
这些都给我们什么形象?(讨论得出平移的定义)
平移的定义
在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
2.你能发现平移前后两个图形相比较,什么没有改变,什么发生了改变吗?
提示:形状、大小、位置
二、探索过程
探索平移的基本性质
实例1:
1.传送上的电视机的形状、大小在运动前后是否发生了改变?
(课件演示)没有
2.如果把移动前后的同一台电视机的屏幕分别记为四边形ABCD和四边形EFGH,那么四边形ABCD与四边形EFGH形状与大小是否相同?没有
平移定义:
在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移不改变图形的形状和大小。
根据平移定义,探讨平移的基本性质.
想一想
1、下图中线段AE,BF,CG,DH有怎样的位置关系?
2、下图中每对对应线段之间有怎样的位置关系?
3、下图中有哪些相等的线段、相等的角?
学生分组讨论得出 平移的基本性质:
经过平移,对应点所连的线段平行且相等;对应线段平行且相等,对应角相等。
例题讲述
如图,平移三角形ABC,使点A移动到点A,,画出平移后的三角形A,B,C,
三.预习题处理
练习一 练习二 练习三
四.反馈提高
练习四
由△ABC平移而得的三角形共有多少个
解:共有5个。
练习五
如图,△ABC是由△CEF平移而得,图中有哪些相等的线段?相等的角?
解:AB=CE, BC=EF, AC=CF =BE
∠BAC=∠ECF=∠CEB, ∠ACB=∠CFE=∠CBE
∠ABC=∠CEF=∠BCE
练习六
能由△AOB平移而得的图形是哪个?
解:能由△AOB平移而得的图形是: △FOE、△COD
本课小结
平移的定义
在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。